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This document presents the mathematical grounds for the VPython simulation in a gravitational
field produced by a rectangular monolith. It also discusses some implementation problems when
programming the math in Python. 

The context  of  the simulation is  scientific  fiction.  In this  simulation the gravitational  prism is  a
space volume of  “dark matter” which produces the interaction of gravity, but it has no rigid body
behaving i.e. in the simulation, the spaceship can pass through the prism. The gravitational field
outside and inside of the prism is produced according to the Newton’s law of universal gravitation.  

The following documents have inspired the simulation to be completed: 
(1) Stanislav Barton, Veikko Keränen: Clarken Avaruusseikkailu ja Newtonin gravitaatiolaki (Finnish)
https://www.dimensiolehti.fi/clarken-avaruusseikkailu-ja-newtonin-gravitaatiolaki/
(2) Buddhader Banerjee and P. Das Gupta: Gravitational Attraction of a Rectangular Parallepiped
Geophysics, vol. 42, No. 5 (August 1977); P. 1053-1055.
(3) James M. Chappell, Azhar Iqbal, and Derek Abbott: The gravitational field of a cube
https://arxiv.org/pdf/1206.3857.pdf



Newton’s Gravitation Law

Figure 1.

Monolith is  a  right  rectangular  prism that  the spaceship is  approaching.  According to Arthur C.
Clarke’s A Space Odyssey the monolith’s sides were on a ratio 1:4:9 which is used also in this simula-
tion. 

The equation for universal gravitation takes the form
F = - κm1 m2

r122 r12
0 

where 
κ=Gravitational constant =6.6723 10-11 m3 s-2 kg-1

r12
0 = (X-x, Y-y,Z-z)

(x-X)2+(y-Y)2+(z-Z)2
 is the unit distance vector from mass m1 to mass m2

Usually, the other mass is much heavier than the other, and we can assume that it does not move.
The acceleration of the lighter mass  at some space point in the gravitational field of the heavier
mass  is obtained from Newton’s law by dividing the the lighter mass. If  the masses in Newton’s
law  are  homogeneous  spheres,  we  can  assume  that  their  mass  is  centered.  This  is  shown,  for
example, in document (1). However, with a rectangular monolith this assumption does not hold.  

As it is presented in the Figure 1., the acceleration is produced by the total mass of all differential
volume units of the monolith. Since the distance between the units and the spaceship varies, we
have to integrate over the whole volume. This is very interesting mathematical and programming
problem for our simulation.

Let us set:
The center of the monolith is in origin, and the space ship position is in (X,Y,Z). 
The ratio 1:4:9 of the sides of the monoliths yields the limits of the integration x1=-9/2T, x2=9/2T,
y1=-2T, y1=2T, z1=-1/2T, and z2=1/2T, where T is the length of the shortest side. 

Now, we can determine the acceleration at space point (X,Y,Z) by equation 1.

a= (ax, ay, az) = κρ
-
T

2

T

2
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
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2 T (x - X, y- Y, z- Z)

R3
ⅆx ⅆy ⅆz (1)

where R = (x - X)2 + (y - Y)2 + (z - Z)2 . The integration is applied to each component separately.
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The order of the integration variables can be selected freely.  

 

We can compute the result of the definite triple integral in many ways. Below we present tree ones. 

First, in mathematical software obeying symbolic computation it is possible to compute definite
triple integrals  just by writing them. In many cases, like here, it can take a huge amount of time, or
it is not possible at all. In VPython, we  can not use these environment.

Second, we can compute or derive on a paper the analytic solution of the integral function F(x,y,z).
After that we can use symbolic substitutions to get the result

a= κρ [F (x, y, z)] x=x1
x2 

y=y1
y2


z=z1

z2
(2)

In Python programming there is module SymPy for symbolic mathematics and computer algebra. 
Module  SymPy  was  tested  to  compute  the  substitutions  of  the  triple  integral  (2).  The  module
managed, but unfortunately the rewriting processes needed in symbolic substitutions proved to be
too slow for simulation purposes.
There  is  also  module  SciPy  which  is  a  collection  of  mathematical  algorithms  and  convenience
functions including also integration function quad(). This module was not tested, since the third
solution was found.

Third, we can compute the result of substitutions numerically by the following decomposition:


z1

z2


y1

y2


x1

x2

f[x, y, z] ⅆx ⅆy ⅆz = 
z1

z2


y1

y2

int1[x2, y, z] - int1[x1, y, z] ⅆy ⅆz =


z1

z2

int2[x2, y2, z] - int2[x2, y1, z] - int2[x1, y2, z] - int2[x1, y1, z] ⅆz =

F[x2, y2, z2] - F[x2, y2, z1] - F[x2, y1, z2] - F[x2, y1, z1] -

F[x1, y2, z2] - F[x1, y2, z1] - F[x1, y1, z2] - F[x1, y1, z1] =

F[x2, y2, z2] - F[x2, y2, z1] - F[x2, y1, z2] - F[x2, y1, z1] -

F[x1, y2, z2] - F[x1, y2, z1] + F[x1, y1, z2] - F[x1, y1, z1]

The final  substitutions can be computed in a normal python function,  and it  proved to be fast
enough for simulation. Besides, no extra modules needed to be loaded.
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The analytic solution of the triple integral

Let us explore the analytic solution to triple integration for the first component of acceleration in
origin. The solution at point (X, Y, Z) is obtained simply by the substitutions x→ x - X, y→ y - Y, and
z→ z - Z.
The  first  two  integrations  are  found  easily  by  basic  integration  methods.  But  the  final  integral
function needs more complicated methods. With Mathematica’s algorithms we get the following
solution:  

In[ ]:= int1 = Integrate
x

x2 + y2 + z2
3
, x;

int2 = Integrate[int1, y]

int2 // FullSimplify

Out[ ]=

1

2
Log1 -

y

x2 + y2 + z2
 -

1

2
Log1 +

y

x2 + y2 + z2


Out[ ]= -ArcTanh
y

x2 + y2 + z2


In[ ]:= int3 = Integrate[int2, z]

Out[ ]= x ArcTan
y z

x x2 + y2 + z2
 +

1

2
z Log1 -

y

x2 + y2 + z2
 -

1

2
z Log1 +

y

x2 + y2 + z2
 - y Logz + x2 + y2 + z2 

The last form can be transformed to the final analytic solution of integral function of the form:

F[x_, y_, z_] :=

x ArcTan
y z

x x2 + y2 + z2
 -

1

2
z Log

y + x2 + y2 + z2

-y + x2 + y2 + z2
 - y Logz + x2 + y2 + z2 
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